Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-Pyridin-2-yl-1H-1,2,4-triazol-5-amine

Anton V. Dolzhenko, ${ }^{\text {a }}$ Geok Kheng Tan, ${ }^{\text {b }}$ Lip Lin Koh, ${ }^{\text {b }}$ Anna V. Dolzhenko ${ }^{\text {a }}$ and Wai Keung Chui ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore, and ${ }^{\text {b }}$ Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
Correspondence e-mail: phada@nus.edu.sg
Received 13 November 2008; accepted 11 December 2008
Key indicators: single-crystal X-ray study; $T=223 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.042 ; w R$ factor $=0.110$; data-to-parameter ratio $=14.6$.

In the title compound, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{5}$, the non- H atoms are almost coplanar (r.m.s. deviation $=0.050 \AA$), with the N atom of pyridine ring oriented to the $\mathrm{N}-\mathrm{N}(\mathrm{H})$ side of the $1,2,4-$ triazole ring. The mean planes of the pyridine and 1,2,4triazole rings form a dihedral angle of $5.58(7)^{\circ}$. The N atom of the amino group adopts a pyramidal configuration. The molecules are linked into a two-dimensional network parallel to (10 $\overline{1}$) by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Related literature

For 1,2,4-triazol-5-amines as building blocks in the synthesis of fused heterocyclic systems, see: Dolzhenko et al. (2006, $2007 a, b)$; Fischer, (2007). For a summary of structural data for 1,2,4-triazoles, see: Buzykin et al. (2006). For crystal structures of $\mathrm{Cu}^{\text {II }}$ complexes with 3-pyridin-2-yl-1,2,4-triazol-5-amine, see: Ferrer et al. (2004).

Experimental

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{5}$
$M_{r}=161.18$
Monoclinic, $P 2_{1} / n$
$a=7.3863$ (6) A

$$
\begin{aligned}
& b=7.9096(6) \AA \\
& c=13.2157(11) \AA \\
& \beta=91.832(2)^{\circ} \\
& V=771.70(11) \AA^{3}
\end{aligned}
$$

$Z=4$

Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
Data collection
Bruker SMART APEX CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{\text {min }}=0.967, T_{\text {max }}=0.989$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.110$
$S=1.05$
1772 reflections
121 parameters
$T=223(2) \mathrm{K}$
$0.36 \times 0.16 \times 0.12 \mathrm{~mm}$

5336 measured reflections 1772 independent reflections 1519 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.026$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 N \cdots \mathrm{~N} 5^{\mathrm{i}}$	$0.90(2)$	$2.01(2)$	$2.9010(16)$	$171(1)$
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{~N}^{\mathrm{ii}}$	$0.90(2)$	$2.11(2)$	$2.9971(16)$	$172(1)$
$\mathrm{N} 4-\mathrm{H} 4 B \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.93(2)$	$2.19(2)$	$3.0264(16)$	$151(1)$

Symmetry codes: (i) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{3}{2}$; (ii) $-x+1,-y,-z+1$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the National Medical Research Council, Singapore (grant Nos. NMRC/NIG/0019/2008 and NMRC/NIG/0020/2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2719).

References

Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.
Buzykin, B. I., Mironova, E. V., Nabiullin, V. N., Gubaidullin, A. T. \& Litvinov, I. A. (2006). Russ. J. Gen. Chem. 76, 1471-1486.

Dolzhenko, A. V., Dolzhenko, A. V. \& Chui, W. K. (2006). Heterocycles, 68, 1723-1759.
Dolzhenko, A. V., Dolzhenko, A. V. \& Chui, W. K. (2007a). Heterocycles, 71, 429-436.
Dolzhenko, A. V., Dolzhenko, A. V. \& Chui, W. K. (2007b). Tetrahedron, 63, 12888-12895.
Ferrer, S., Ballesteros, R., Sambartolome, A., Gonzalez, M., Alzuet, G., Borras, J. \& Liu, M. (2004). J. Inorg. Biochem. 98, 1436-1446.

Fischer, G. (2007). Adv. Heterocycl. Chem. 95, 143-219.
Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

3-Pyridin-2-yl-1H-1,2,4-triazol-5-amine

A. V. Dolzhenko, G. K. Tan, L. L. Koh, A. V. Dolzhenko and W. K. Chui

Comment

1,2,4-Triazol-5-amines have been recognized as valuable synthons for the construction of fused heterocyclic systems, e.g. 1,2,4-triazolo[1,5-a]pyrimidines (Fischer, 2007) and 1,2,4-triazolo[1,5-a][1,3,5]triazines (Dolzhenko et al., 2006). It also should be mentioned that 1,2,4-triazol-5-amines are widely used as ligands and crystallographic data on three different mononuclear complexes of 3-pyridin-2-yl-1,2,4-triazol-5-amine with $\mathrm{Cu}^{\text {II }}$ have been reported by Ferrer et al. (2004). However, no crystallographic study has been performed on the ligand.

In continuation of our investigations on using 1,2,4-triazol-5-amines in the synthesis of fused heterocyclic systems (Dolzhenko et al., 2007a,b), we report herein the crystal structure of a synthetically important building block viz. 3-pyrid-in-2-yl-1,2,4-triazol-5-amine.

Due to annular tautomerism, 3-pyridin-2-yl-1,2,4-triazol-5-amine may theoretically exist in three tautomeric forms (A, \mathbf{B} and \mathbf{C}) and for each of them, rotameric structures $\mathbf{A}^{\prime}, \mathbf{B}^{\prime}$ and \mathbf{C}^{\prime} are possible (Fig.1). As observed in reported $\mathrm{Cu}^{\text {II }}$ complexes (Ferrer et al., 2004), 3-pyridin-2-yl-1,2,4-triazol-5-amine was the only tautomeric form found in the crystal (Fig. 2). However, the molecule exists in the crystal as rotamer \mathbf{A} in contrast to rotamer \mathbf{A}^{\prime} found in $\mathrm{Cu}^{\text {II }}$ complexes.

Bond lengths and angles in the molecule of 3-pyridin-2-yl-1,2,4-triazol-5-amine are within normal ranges, and comparable with values summarized for 1,2,4-triazoles by Buzykin et al. (2006). 3-Pyridin-2-yl-1,2,4-triazol-5-amine has practically planar geometry with slight deviation of the pyridyl moiety, which makes a dihedral angle of $5.58(7)^{\circ}$ with mean plane of the $1,2,4$-triazole ring. The nitrogen atom (N4) of the amino group adopts a pyramidal configuration with 0.26 (2) \AA deviation of the nitrogen atom from the C2/H4A/H4B plane.

The molecules are linked into a two-dimensional network parallel to the (10 $\overline{1})$ by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 1 and Fig.3).

Experimental

3-Pyridin-2-yl-1,2,4-triazol-5-amine was prepared according to general method reported by Dolzhenko et al. (2007a,b). Single crystals suitable for crystallographic analysis were grown by recrystallization from ethanol.

Refinement

N -bound H -atoms were located in a difference map and refined freely $[\mathrm{N}-\mathrm{H}=0.90(2)-0.92$ (2) \AA]. C-bound H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.94 \AA)$ and were constrained in a riding motion approximation with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

supplementary materials

Figures

Fig. 1. Possible tautomers and rotamers of 3-pyridin-2-yl-1,2,4-triazol-5-amine.

Fig. 2. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 3. Molecular packing of the title compound, viewed along the c axis.

3-Pyridin-2-yl-1H-1,2,4-triazol-5-amine

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{5}$

$M_{r}=161.18$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2 yn
$a=7.3863$ (6) \AA
$b=7.9096$ (6) \AA
$c=13.2157(11) \AA$
$\beta=91.832$ (2) ${ }^{\circ}$
$V=771.70(11) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEX CCD
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=223(2) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
$T_{\text {min }}=0.967, T_{\text {max }}=0.989$
5336 measured reflections
$F_{000}=336$
$D_{\mathrm{x}}=1.387 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 493 K
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 1841 reflections
$\theta=3.0-26.6^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=223$ (2) K
Block, colourless
$0.36 \times 0.16 \times 0.12 \mathrm{~mm}$

1772 independent reflections
1519 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=27.5^{\circ}$
$\theta_{\min }=3.0^{\circ}$
$h=-9 \rightarrow 9$
$k=-8 \rightarrow 10$
$l=-14 \rightarrow 17$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.110$
$S=1.05$
1772 reflections
121 parameters
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0539 P)^{2}+0.1487 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.21 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.20$ e \AA^{-3}
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
N1	$0.72741(16)$	$0.34999(14)$	$0.68693(8)$	$0.0383(3)$
N 2	$0.66107(16)$	$0.19639(15)$	$0.71630(8)$	$0.0393(3)$
H 2 N	$0.669(2)$	$0.164(2)$	$0.7817(14)$	$0.052(5)^{*}$
N 3	$0.61324(14)$	$0.20352(14)$	$0.55193(8)$	$0.0345(3)$
N 4	$0.51489(16)$	$-0.04181(15)$	$0.64256(9)$	$0.0398(3)$
H4A	$0.488(2)$	$-0.095(2)$	$0.5842(13)$	$0.049(4)^{*}$
H4B	$0.564(2)$	$-0.106(2)$	$0.6948(13)$	$0.050(4)^{*}$
N5	$0.80901(15)$	$0.62905(15)$	$0.56803(8)$	$0.0388(3)$
C1	$0.69411(16)$	$0.34759(16)$	$0.58805(9)$	$0.0331(3)$
C2	$0.59494(16)$	$0.11150(17)$	$0.63532(9)$	$0.0343(3)$
C3	$0.74353(16)$	$0.48955(17)$	$0.52229(9)$	$0.0343(3)$
C4	$0.72299(19)$	$0.47748(19)$	$0.41755(10)$	$0.0425(3)$
H4	0.6758	0.3786	0.3873	0.051^{*}
C5	$0.77288(19)$	$0.6128(2)$	$0.35870(11)$	$0.0491(4)$
H5	0.7598	0.6076	0.2878	0.059^{*}
C6	$0.8419(2)$	$0.7554(2)$	$0.40516(12)$	$0.0486(4)$
H6	0.8781	0.8489	0.3668	0.058^{*}

C7	$0.85663(19)$	$0.75796(19)$	$0.50930(12)$	$0.0455(4)$
H7	0.9029	0.8561	0.5408	0.055^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N 1	$0.0476(6)$	$0.0387(6)$	$0.0282(5)$	$-0.0007(5)$	$-0.0076(4)$	$0.0006(4)$
N 2	$0.0518(7)$	$0.0392(6)$	$0.0261(6)$	$-0.0013(5)$	$-0.0092(5)$	$0.0000(5)$
N 3	$0.0362(5)$	$0.0396(6)$	$0.0273(5)$	$0.0042(4)$	$-0.0059(4)$	$-0.0028(4)$
N 4	$0.0498(7)$	$0.0397(6)$	$0.0291(6)$	$-0.0021(5)$	$-0.0110(5)$	$-0.0001(5)$
N 5	$0.0420(6)$	$0.0409(6)$	$0.0332(6)$	$0.0030(5)$	$-0.0043(5)$	$0.0012(5)$
C1	$0.0330(6)$	$0.0385(7)$	$0.0273(6)$	$0.0057(5)$	$-0.0056(5)$	$-0.0035(5)$
C2	$0.0357(6)$	$0.0391(7)$	$0.0274(6)$	$0.0053(5)$	$-0.0068(5)$	$-0.0030(5)$
C3	$0.0305(6)$	$0.0419(7)$	$0.0301(6)$	$0.0076(5)$	$-0.0028(5)$	$-0.0010(5)$
C4	$0.0442(7)$	$0.0522(8)$	$0.0310(7)$	$0.0046(6)$	$-0.0016(5)$	$-0.0025(6)$
C5	$0.0488(8)$	$0.0683(10)$	$0.0304(7)$	$0.0080(7)$	$0.0032(6)$	$0.0071(7)$
C6	$0.0444(8)$	$0.0558(9)$	$0.0457(8)$	$0.0057(7)$	$0.0046(6)$	$0.0150(7)$
C7	$0.0454(8)$	$0.0447(8)$	$0.0460(8)$	$0.0013(6)$	$-0.0035(6)$	$0.0050(6)$

Geometric parameters ($\left.\AA{ }^{\circ}{ }^{\circ}\right)$
$\mathrm{N} 1-\mathrm{C} 1$
$\mathrm{~N} 1-\mathrm{N} 2$
$\mathrm{~N} 2-\mathrm{C} 2$
$\mathrm{~N} 2-\mathrm{H} 2 \mathrm{~N}$
$\mathrm{~N} 3-\mathrm{C} 2$
$\mathrm{~N} 3-\mathrm{C} 1$
$\mathrm{~N} 4-\mathrm{C} 2$
$\mathrm{~N} 4-\mathrm{H} 4 \mathrm{~A}$
$\mathrm{~N} 4-\mathrm{H} 4 \mathrm{~B}$
$\mathrm{~N} 5-\mathrm{C} 7$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{N} 1$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$
$\mathrm{~N} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 1$
$\mathrm{C} 2-\mathrm{N} 4-\mathrm{H} 4 \mathrm{~A}$
$\mathrm{C} 2-\mathrm{N} 4-\mathrm{H} 4 \mathrm{~B}$
$\mathrm{H} 4 \mathrm{~A}-\mathrm{N} 4-\mathrm{H} 4 \mathrm{~B}$
$\mathrm{C} 7-\mathrm{N} 5-\mathrm{C} 3$
N1-C1-N3
N1-C1-C3
N3-C1-C3
N3-C2-N2
N3-C2-N4
N2-C2-N4

$1.3221(16)$	N5-C3	$1.3410(17)$
$1.3708(16)$	C1-C3	$1.4729(18)$
$1.3422(16)$	C3-C4	$1.3909(18)$
$0.902(19)$	C4-C5	$1.380(2)$
$1.3312(17)$	C4-H4	0.94
$1.3656(16)$	C5-C6	$1.374(2)$
$1.3538(18)$	C5-H5	0.94
$0.896(18)$	C6-C7	$1.377(2)$
$0.925(17)$	C6-H6	0.94
$1.3354(18)$	C7-H7	0.94
$102.14(10)$	N5-C3-C4	$122.10(13)$
$109.99(11)$	N5-C3-C1	$116.99(11)$
$129.2(11)$	C4-C3-C1	$120.91(12)$
$120.8(11)$	C5-C4-C3	$119.01(14)$
$102.81(10)$	C5-C4-H4	120.5
$116.4(10)$	C3-C4-H4	120.5
$112.7(10)$	C6-C5-C4	$119.12(14)$
$117.2(14)$	C6-C5-H5	120.4
$117.65(12)$	C4-C5-H5	120.4
$115.02(12)$	C5-C6-C7	$118.36(14)$
$122.04(12)$	C5-C6-H6	120.8
$122.94(11)$	C7-C6-H6	120.8
$110.03(12)$	N5-C7-C6	$123.76(15)$
$127.19(11)$	N5-C7-H7	118.1
$122.71(12)$	C6-C7-H7	118.1

sup-4

supplementary materials

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{~N} \cdots \mathrm{~N} 5^{\mathrm{i}}$	$0.90(2)$	$2.01(2)$	$2.9010(16)$	$171(1)$
$\mathrm{N} 4 — \mathrm{H} 4 \mathrm{~A} \cdots \mathrm{~N} 3^{\mathrm{ii}}$	$0.90(2)$	$2.11(2)$	$2.9971(16)$	$172(1)$
$\mathrm{N} 4 — \mathrm{H} 4 \mathrm{~B} \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.93(2)$	$2.19(2)$	$3.0264(16)$	$151(1)$

Symmetry codes: (i) $-x+3 / 2, y-1 / 2,-z+3 / 2$; (ii) $-x+1,-y,-z+1$.

supplementary materials

Fig. 1

Fig. 2

supplementary materials

Fig. 3

